В данной публикации мы рассмотрим, какие векторы называются ортогональными, какое условие при этом должно выполняться. Также разберем примеры решения задач по этой теме.
Условие ортогональности векторов
Векторы a и b являются ортогональными, если угол между ними прямой (т.е. равен 90°).
Примечание: Скалярное произведение ортогональных векторов равняется нулю. Это и есть существенное условие их ортогональности.
a · b = 0
То есть, если в плоскости
Примеры задач
Задание 1
Докажем, что векторы
Решение:
a · b = 2 · (-2) + 4 · 1 = 0
Следовательно, заданные векторы являются ортогональными, так как их скалярное произведение равняется нулю.
Задание 2
При каком значении n векторы
Решение:
a · b = 3 · 6 + (-9) · n = 0
18 – 9n = 0
n = 2
Таким образом, a и b ортогональны при n, равном двум.