В данной публикации мы рассмотрим формулу, с помощью которой можно вычислить площадь поверхности сектора шара, а также то, каким образом она получена.
Определение сектора шара
Сектор шара (или шаровый сектор) – это часть шара, состоящая из шарового сегмента и конуса, вершиной которого является центр шара, а основанием – основание соответствующего сегмента. На рисунке ниже сектор закрашен оранжевым цветом.
- R – радиус шара;
- r – радиус основания сегмента и конуса;
- h – высота сегмента; перпендикуляр от центра основания сегмента до точки на сфере.
Формула для нахождения площади сектора шара
Чтобы найти площадь поверхности шарового сектора необходимо сложить площади фигур, из которых он состоит: сферической поверхности соответствующего сегмента шара и боковой поверхности конуса.
Sсфер. пов. сегмента = 2πRh
Sбок. пов. конуса = πrR
Sпов. шар. сектора = 2πRh + πrR = πR(2h+r)
Примечания:
- если вместо радиусов (R/r) известны соответствующие им диаметры (d), последние следует разделить на два, чтобы найти требуемые радиусы.
- за значение π в формулах обычно принимается округленно значение, равное числу 3,14.