Нахождение площади квадрата: формула и примеры

129131

Квадрат – это геометрическая фигура; правильный четырехугольник, т.е. четырехугольник, имеющий равные стороны и углы (90°).

Формула вычисления площади

1. По длине стороны: 

Площадь квадрата (S) равняется квадрату длины его стороны:

S = a2

Площадь квадрата

Данная формула следует из того, что квадрат является частным случаем прямоугольника, площадь которого находится путем умножения его смежных сторон:

S = a*b

Площадь прямоугольника

А т.к. все стороны квадрата равны, то вместо стороны b мы снова подставляем в формулу сторону a, т.е. S = a*a = a2.

2. По по длине диагонали

Площадь квадрата равняется половине квадрата длины его диагонали:

S = d2/2

Площадь квадрата по длине его диагонали

Соотношение стороны и диагонали квадрата: d=a√2.

Примеры задач

Задание 1
Найдите площадь квадрата, сторона которого равна 7 см.

Решение:
Используем формулу по длине стороны, т.е. S = 72 = 49 см2.

Задание 2
Найдите площадь квадрата, диагональ которого равняется 4 см.

Решение 1:
Воспользуемся второй формулой (по длине диагонали): S = 42/2 = 8 см2.

Решение 2:
Мы можем выразить длину стороны через диагональ: a = 4/√2. И тогда, используя первую формулу, S = (4/√2)2 = 8 см2.

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии