Треугольник – это геометрическая фигура, которая состоит из трех сторон, образованных путем соединения трех точек на плоскости, не принадлежащих одной прямой.
Общие формулы расчета площади треугольника
По основанию и высоте
Площадь (S) треугольника равняется половине произведения его основания и высоты, проведенной к нему.
Формула Герона
Для нахождения площади (S) треугольника необходимо знать длины всех его сторон. Считается она следующим образом:
p – полупериметр треугольника:
Через две стороны и угол между ними
Площадь треугольника (S) равняется половине произведения двух его сторон и синуса угла между ними.
Площадь прямоугольного треугольника
Площадь (S) фигуры равняется половине произведения его катетов.
Площадь равнобедренного треугольника
Площадь (S) рассчитывается по следующей формуле:
Площадь равностороннего треугольника
Чтобы найти площадь правильного треугольника (все стороны фигуры равны), необходимо воспользоваться одной из формул ниже:
Через длину стороны
Через высоту
Примеры задач
Задание 1
Найдите площадь треугольника, если одна из его сторон равна 7 см, а высота, проведенная к ней – 5 см.
Решение:
Используем формулу, в которой участвуют длина стороны и высота:
S = 1/2 ⋅ 7 см ⋅ 5 см = 17,5 см2.
Задание 2
Найдите площадь треугольника, стороны которого равны 3, 4 и 5 см.
Решение 1:
Воспользуемся формулой Герона:
Полупериметр (p) = (3 + 4 + 5) / 2 = 6 см.
Следовательно,
Решение 2:
Т.к. треугольник со сторонами 3, 4 и 5 – прямоугольный, его площадь можно посчитать по соответствующей формуле:
S = 1/2 ⋅ 3 см ⋅ 4 см = 6 см2.