В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, вписанной в ромб. Также разберем примеры решения задач для закрепления изложенного материала.
Формулы вычисления радиуса вписанной в ромб окружности
Через диагонали и сторону
Радиус r вписанной в ромб окружности равняется произведению его диагоналей, деленному на сторону, умноженную на 4.
- d1 и d2 – диагонали ромба;
- a – сторона ромба.
Через диагонали
Радиус r вписанной в ромб окружности можно найти, зная только длины его обеих диагоналей:
Эту формулу можно получить, если сторону a в формуле выше выразить через диагонали (согласно одному из свойств ромба):
Через сторону и угол
Радиус окружности r, вписанной в ромб, равняется половине произведения его стороны и синуса любого угла.
Через высоту
Радиус вписанного в ромб круга равняется половине его высоты.
- h (или GF) – высота ромба;
- h = 2r.
Примеры задач
Задание 1
Известно, что диагонали ромба равны 6 и 8 см. Найдите радиус окружности, вписанной в него.
Решение
Применим соответствующую формулу, подставив в нее известные значения:
Задание 2
Вычислите радиус вписанного в ромб круга, если его сторона равна 11 см, а один из углов – 30°.
Решение
В данном случае мы можем воспользоваться последней из рассмотренных выше формул: