В данной публикации мы рассмотрим, как можно найти смешанное произведение трех векторов через вычисление определителя соответствующей матрицы, перечислим свойства этой операции, а также разберем пример решения задачи.
Нахождение смешанного произведения векторов
Смешанное произведение векторов равняется определителю матрицы, которая составлена из координат этих векторов.
Алгоритм действий следующей:
Допустим, у нас есть три вектора:
Свойства смешанного произведения векторов
1. Модуль смешанного произведения трех векторов равняется объему параллелепипеда, который образован этими векторами.
Vпаралл. = |a · [b × c]|
2. Объем пирамиды, которая образована тремя векторами, равняется 1/6 от модуля смешанного произведения данных векторов.
Vпаралл. = 1/6 · |a · [b × c]|
3. Смешанное произведение трех ненулевых компланарных векторов равняется нулю.
4. a · [b × c] =
5. a · [b × c] =
6. a · [b × c] + b · [c × a] + c · [a × b] = 0
Пример задачи
Найдем смешанное произведение векторов
Решение:
a · [b × c] =