Свойства прямоугольного треугольника

61088

В данной публикации мы рассмотрим определение и свойства прямоугольного треугольника. Также разберем пример решения задачи для закрепления изложенного материала.

Определение прямоугольного треугольника

Прямоугольным называют треугольник, в котором один из трех углов является прямым, т.е. равным 90°.

Прямоугольный треугольник

  • AB и AC – катеты;
  • BC – гипотенуза.

Прямоугольный треугольник может быть равнобедренным – когда оба катета равны, а угол между каждым из них и гипотенузой составляет 45°.

Равнобедренный прямоугольный треугольник

Свойства прямоугольного треугольника

Свойство 1

Сумма двух острых углов прямоугольного треугольника равняется 90°.

α + β = 90°

Сумма всех углов любого треугольника составляет 180°. Т.к. один угол равен 90°, на два других, также, остается 90°.

Свойство 2

Катет прямоугольного треугольника, расположенный напротив угла в 30°, равняется половине его гипотенузы.

В нашем случае, катет AB лежит напротив ∠ACB = 30°. Следовательно:

Длина катета напротив угла в 30 градусов

Прямоугольный треугольник с острым углом в 30 градусов

Обратная формулировка:

Если длина одного из катетов прямоугольного треугольника в два раза меньше длины его гипотенузы, значит угол напротив этого катета равняется 30°.

Свойство 3

Терему Пифагора можно, также, отнести к свойствам прямоугольного треугольника. Согласно ее формулировке, сумма квадратов катетов (a и b) равняется квадрату гипотенузы (c).

a2 + b2 = c2

Таким образом, гипотенуза прямоугольного треугольника больше любого из его катетов.

Свойство 4

Медиана, опущенная на гипотенузу прямоугольного треугольника (проведенная из вершины прямого угла), равняется половине гипотенузы.

Медиана прямоугольного треугольника опущенная на гипотенузу

  • AD – медиана
  • AD = BD = DC

Свойство 5

Середина гипотенузы прямоугольного треугольника – это центр описанной вокруг него окружности.

Описанная вокруг прямоугольного треугольника окружность

Согласно свойству 4, рассмотренному выше, медиана BO равняется половине гипотенузы AC и, одновременно, радиусу окружности, описанной вокруг △ABC.

BO = AO = OC = Rокр.

Пример задачи

В качестве примера давайте рассмотрим второе свойство, представленное выше. Допустим у нас имеется прямоугольный треугольник ABC с прямым углом в вершине C. Катет BC расположен напротив угла в 30°. Нужно доказать, что BC в два раза меньше гипотенузы AB.

Решение

Нарисуем чертеж по условиям задачи, и зеркально отразим получившийся треугольник.

Доказательство свойства прямоугольного треугольника с углом в 30 градусов

Получаем △ABD, в котором ∠BAD равен 60° (30° + 30°). Т.к. все три угла данного треугольника равны, он является равносторонним. Следовательно, AD = AB = BD.

Отрезки BC и CD равны между собой (зеркально отраженные), и каждый из них составляет половину BD. Как мы уже выяснили, BD равняется AB.

Таким образом, BC в два раза меньше AB (или AB = 2BC).

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии