Решение уравнений с одним неизвестным (переменной)

1826

В данной публикации мы рассмотрим определение и общий вид записи уравнения с одним неизвестным, а также приведем алгоритм его решения с практическими примерами для лучшего понимания.

Определение и запись уравнения

Математическое выражение вида ax + b = 0 называется уравнением с одним неизвестным (переменной) или линейным уравнением. Здесь:

  • a и b – любые числа: a – коэффициент при неизвестном, b – свободный коэф.
  • x – переменная. Для обозначения может использоваться любая буква, но общепринятыми являются латинские x, y и z.

Уравнение можно представить в равнозначном виде ax = -b. После этого мы смотрим на коэффициенты.

  • При a ≠ 0 единственный корень x = -b/a.
  • При a = 0 уравнение примет вид 0 ⋅ x = -b. В таком случае:
    • если b ≠ 0, корней нет;
    • если b = 0, корнем является любое число, т.к. выражение 0 ⋅ x = 0 верно при любом значении x.

Алгоритм и примеры решения уравнений с одим неизвестным

Простые варианты

Рассмотрим простые примеры при a = 1 и наличии всего одного свободного коэффициента.

Сложные варианты

При решении более сложного уравнения с одной переменной, очень часто требуется сначала его упростить, прежде чем находить корень. Для этого могут применяться следующие приемы:

  • раскрытие скобок;
  • перенос всех неизвестных в одну сторону от знака “равно” (обычно в левую), а известных в другую (правую, соответственно).
  • приведение подобных членов;
  • освобождение от дробей;
  • разделение обеих частей на коэффициент при неизвестном.

Пример: решим уравнение (2x + 6) ⋅ 3 – 3x = 2 + x.

Решение

  1. Раскрываем скобки:
    6x + 18 – 3x = 2 + x.
  2. Переносим все неизвестные влево, а известные вправо (не забываем при переносе менять знак на противоположный):
    6x – 3x – x = 2 – 18.
  3. Выполняем приведение подобных членов:
    2x = -16.
  4. Делим обе части уравнения на число 2 (коэффициент при неизвестной):
    x = -8.
Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии