В данной публикации мы рассмотрим определение/обозначение подобных треугольников и три признака подобия фигур. Также разберем пример решения задачи для закрепления представленного материала.
Определение и обозначение подобных треугольников
Подобными называются треугольники, у которых углы соответственно равны, а стороны одного треугольника пропорциональны сходственным сторонам другого.
Сходственные стороны в подобных треугольниках – это стороны, лежащие напротив их равных углов.
Для обозначения подобия фигур используется специальный символ “∼“. Например, △ABC ∼ △KLM.
Признаки подобных треугольников
Два треугольника подобны, если выполняется одно из условий, перечисленных далее.
1 признак
Два угла одного треугольника соотвественно равны двум углам другого.
∠BAC = ∠LKM
∠ABC = ∠KLM
2 признак
Две стороны одного треугольника пропорциональны двум сторонам другого, а углы между этими сторонами равны.
∠BAC = ∠LKM
3 признак
Все стороны одного треугольника соответственно пропорциональны всем сторонам другого.
Пример задачи
Даны два треугольника: △ABC со сторонами 3, 4 и 5 см; △DEF со сторонами 6, 8 и 10 см. Докажите, что данные фигуры подобны.
Решение
Т.к. нам известны длины всех сторон, можно проверить подобие с помощью третьего признака, рассмотренного выше:
Данное равенство верно, значит можно утверждать, что △ABC ∼ △DEF.