Точка пересечения двух прямых

143

В данной публикации мы рассмотрим, что такое точка пересечения двух прямых, и как найти ее координаты разными способами. Также разберем пример решения задачи по этой теме.

Нахождение координат точки пересечения

Пересекающимися называются прямые, которые имеют одну общую точку.

Точка пересечения двух прямых

M – точка пересечения прямых. Она принадлежит им обоим, значит ее координаты одновременно должны удовлетворять обоим их уравнениях.

Для нахождения координат этой точки на плоскости можно использовать два способа:

  • графический – чертим графики прямых на координатой плоскости и находим их точку пересечения (не всегда применимо);
  • аналитический – более универсальный метод. Мы объединяем уравнения прямых в систему. Затем решаем ее и получаем требуемые координаты. От количества решений зависит то, каким образом ведут себя прямые по отношению друг к другу:
    • одно решение – пересекаются;
    • множество решений – совпадают;
    • нет решений – параллельны, т.е. не пересекаются.

Пример задачи

Найдем координаты точки пересечения прямых y = x + 6 и y = 2x – 8.

Решение

Составим систему уравнений и решим ее:

Пример системы линейных уравнений

В первом уравнении выразим x через y:
x = y – 6

Теперь подставим полученное выражение во второе уравнение вместо x:
y = 2 (y – 6) – 8
y = 2y – 12 – 8
y – 2y = -12 – 8
-y = -20
y = 20

Значит, x = 20 – 6 = 14

Таким образом, общая точка пересечения заданных прямых имеет координаты (14, 20).

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии