Нахождение площади поверхности усеченного конуса: формулы

4974

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить площадь поверхности прямого усеченного кругового конуса (боковую, полную и основания), а также разберем пример решения задачи для закрепления представленного теоретического материала.

Формулы вычисления площади усеченного конуса

Усеченный конус (конический слой)

Примечание: иногда усеченный конус, также, называют коническим слоем.

1. Боковая поверхность

Чтобы найти площадь (S) боковой поверхности прямого усеченного кругового конуса, необходимо знать длину его образующей, а также радиусы двух оснований.

Sбок. = πRl + πrl = πl(R + r)

Примечание: в этой и других формулах ниже число π чаще всего округляется до 3,14.

2. Основания

Основаниями кругового усеченного конуса являются два круга, площади которых считаются таким образом:

Sосн.1 = πR 2

Sосн.2 = πr 2

Примечание: если вместо радиусов (R или r) даны соответсвующие им диаметры (d), их следует разделить на 2, чтобы получить нужные радиусы.

3. Полная площадь

Чтобы вычислить площадь полной поверхности усеченного конуса, требуется сложить площади его боковой поверхности и двух оснований.

Sполн. = πl(R + r) + πR 2 + πr 2 = π(lR + lr + R 2 + r 2)

Пример задачи

Найдите площадь поверхности усеченного конуса, если известно, что радиусы его оснований равны 6 и 11 см, а длина образующей составляет 8 см.

Решение

Все известные значения для вычисления площади нам известны, так что остается лишь подставить их в формулы, приведенные выше.

Sбок. = 3,14 ⋅ 8 см ⋅ (6 см + 11 см) = 427,04 см2

Sосн.1 = 3,14 ⋅ (11 см) 2 = 379,94 см2

Sосн.2 = 3,14 ⋅ (6 см) 2 = 113,04 см2

Sполн. = 427,04 см2 + 379,94 см2 + 113,04 см2 = 920,02 см2

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии