Треугольник – это геометрическая фигура, которая состоит из трех сторон, образованных путем соединения трех точек на плоскости, не принадлежащих одной прямой.
Общие формулы расчета площади треугольника
1. По основанию и высоте
Площадь (S) треугольника равняется половине произведения его основания и высоты, проведенной к нему.
2. Формула Герона
Для нахождения площади (S) треугольника необходимо знать длины всех его сторон. Считается она следующим образом:
p – полупериметр треугольника:
3. Через две стороны и угол между ними
Площадь треугольника (S) равняется половине произведения двух его сторон и синуса угла между ними.
Площадь прямоугольного треугольника
Площадь (S) фигуры равняется половине произведения его катетов.
Площадь равнобедренного треугольника
Площадь (S) рассчитывается по следующей формуле:
Площадь равностороннего треугольника
Чтобы найти площадь правильного треугольника (все стороны фигуры равны), необходимо воспользоваться одной из формул ниже:
1. Через длину стороны
2. Через высоту
Примеры задач
Задание 1
Найдите площадь треугольника, если одна из его сторон равна 7 см, а высота, проведенная к ней – 5 см.
Решение:
Используем формулу, в которой участвуют длина стороны и высота: S = 1/2 * 7 см * 5 см = 17,5 см2.
Задание 2
Найдите площадь треугольника, стороны которого равны 3, 4 и 5 см.
Решение 1:
Воспользуемся формулой Герона. Полупериметр (p) = (3+4+5)/2 = 6 см. Следовательно, S = √6(6-3)(6-4)(6-5) = 6 см2.
Решение 2:
Т.к. треугольник со сторонами 3, 4 и 5 – это прямоугольный треугольник, его площадь можно посчитать по соответствующей формуле: S = 1/2 * 3 см * 4 см = 6 см2.