Нахождение радиуса вписанной в ромб окружности

51

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить радиус окружности, вписанной в ромб. Также разберем примеры решения задач для закрепления изложенного материала.

Формулы вычисления радиуса вписанной в ромб окружности

Вписанная в ромб окружность

Через диагонали и сторону

Радиус r вписанной в ромб окружности равняется произведению его диагоналей, деленному на сторону, умноженную на 4.

Формула нахождения радиуса вписанной в ромб окружности через его диагонали и сторону

  • d1 и d2 – диагонали ромба;
  • a – сторона ромба.

Через диагонали

Радиус r вписанной в ромб окружности можно найти, зная только длины его обеих диагоналей:

Формула нахождения радиуса вписанной в ромб окружности через его диагонали

Эту формулу можно получить, если сторону a в формуле выше выразить через диагонали (согласно одному из свойств ромба):

Формула нахождения стороны ромба через его диагонали

Через сторону и угол

Радиус вписанного в ромб круга

Радиус окружности r, вписанной в ромб, равняется половине произведения его стороны и синуса любого угла.

Формула нахождения радиуса вписанного в ромб круга через его сторону и синус угла

Через высоту

Нахождение радиуса вписанной в ромб окружности

Радиус вписанного в ромб круга равняется половине его высоты.

  • h (или GF) – высота ромба;
  • h = 2r.

Примеры задач

Задание 1
Известно, что диагонали ромба равны 6 и 8 см. Найдите радиус окружности, вписанной в него.

Решение
Применим соответствующую формулу, подставив в нее известные значения:

Пример нахождения радиуса вписанной в ромб окружности через его диагонали

Задание 2
Вычислите радиус вписанного в ромб круга, если его сторона равна 11 см, а один из углов – 30°.

Решение
В данном случае мы можем воспользоваться последней из рассмотренных выше формул:

Пример нахождения радиуса вписанной в ромб окружности через его сторону и синус угла

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии