Теорема Фалеса: формулировка и пример решения задачи

9141

В данной публикации мы рассмотрим одну из основных теорем по геометрии 8 класса – теорему Фалеса, которая получила такое название в честь греческого математика и философа Фалеса Милетского. Также разберем пример решения задачи для закрепления изложенного материала.

Формулировка теоремы

Если на одной из двух прямых отмерить равные отрезки и через их концы провести параллельные прямые, то пересекая вторую прямую они отсекут на ней равные между собой отрезки.

Теорема Фалеса (чертеж)

  • A1A2 = A2A3
  • B1B2 = B2B3

Примечание: Взаимное пересечение секущих не играет роли, т.е. теорема верна и для пересекающихся прямых, и для параллельных. Расположение отрезков на секущих, также, не важно.

Обобщенная формулировка

Теорема Фалеса является частным случаем теоремы о пропорциональных отрезках*: параллельные прямые отсекают на секущих пропорциональные отрезки.

В соответствии с этим для нашего чертежа выше справедливо следующее равенство:

Теорема Фалеса (теорема о пропорциональных отрезках)

* т.к. равные отрезки, в т.ч., являются пропорциональными с коэффициентом пропорциональности, равным единице.

Обратная теорема Фалеса

1. Для пересекающихся секущих

Если прямые пересекают две другие прямые (параллельные или нет) и отсекают на них равные или пропорциональные отрезки, начиная от вершины, значит эти прямые являются параллельными.

Обратная теорема Фалеса для пересекающихся секущих

Из обратной теоремы следует:

Обратная теорема Фалеса

Обязательное условие: равные отрезки должны начинаться от вершины.

2. Для параллельных секущих

Отрезки на обеих секущих должны быть равны между собой. Только в этом случае теорема применима.

Обратная теорема Фалеса для параллельных секущих

  • a || b
  • A1A2 = B1B2 = A2A3 = B2B3

Пример задачи

Дан отрезок AB на плоскости. Разделите его на 3 равные части.

Отрезок AB

Решение

Теорема Фалеса (пример)

Проведем из точки A прямую a и отметим на ней три подряд идущих равных отрезка: AC, CD и DE.

Крайнюю точку E на прямой a соединяем с точкой B на отрезке. После этого через оставшиеся точки C и D параллельно BE проведем две прямые, пересекающие отрезок AB.

Образованные таким образом точки пересечения на отрезке AB делят его на три части, равные между собой (согласно теореме Фалеса).

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии