Нахождение площади сегмента круга

82

В данной публикации мы рассмотрим определение сегмента круга и формулы, с помощью которых можно вычислить его площадь (через радиус и центральный угол кругового сектора). Также разберем примеры решения задач для демонстрации практического применения формул.

Определение сегмента круга

Сегмент круга – это часть круга, которая ограничена дугой окружности и ее хордой.

Хорда – это часть прямой (секущей), которая пересекает круг. Концы хорды соединяются с центром круга, в результате чего образуется равнобедренный треугольник, боковые стороны которого являются радиусом окружности. Если к этом треугольнику добавить сегмент, получится сектор.

Сегмент круга

На рисунке выше:

  • сегмент круга закрашен зеленым цветом;
  • отрезок AB – это хорда;
  • часть окружности между точками AB – дуга окружности;
  • R – радиус круга;
  • α – угол сектора.

Формулы нахождения площади кругового сегмента

Через радиус и центральный угол в градусах

Формула нахождения площади кругового сегмента через радиус и центральный угол в градусах

α° – угол в градусах.

Примечание: в расчетах используется значение π, приблизительное равное числу 3,14.

Через радиус и угол сектора в радианах

Формула нахождения площади сегмента круга через радиус и центральный угол в радианах

αрад – угол в радианах.

Примеры задачи

Задание 1
Найдите площадь сегмента круга, если его радиус равен 8 см, а центральный угол сектора, стягивающего сегмент, составляет 45 градусов.

Решение
Воспользуемся первой формулой, подставив в нее известные значения:

Пример нахождения площади сегмента круга через радиус и центральный угол в градусах

Задание 2
Площадь кругового сегмента составляет 24 см2, а центральный угол сектора круга, частью которого является сегмент, равняется 1 радиану. Найдите радиус круга.

Решение
В данном случае мы можем получить радиус из формулы, в которой задействован угол в радианах:

Пример нахождения радиуса круга через площадь сегмента и центральный угол в радианах

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии