Нахождение площади сектора круга

183

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить площадь сектора круга, а также разберем примеры решения задач для демонстрации их практического применения.

Определение сектора круга

Сектор круга – это часть круга, образованная двумя его радиусами и дугой между ними. На рисунке ниже сектор закрашен зеленым цветом.

Сектор круга

  • AB – дуга сектора;
  • R (или r) – радиус круга;
  • α – это угол сектора, т.е. угол между двумя радиусами. Также его иногда называют центральным углом.

Формулы нахождения площади сектора круга

Через длину дуги и радиус круга

Площадь (S) сектора круга равняется одной второй произведения длины дуги сектора (L) и радиуса круга (r).

Формула расчета площади сектора круга через длину дуги и радиус

Через угол сектора (в градусах) и радиус круга

Площадь (S) сектора круга равняется площади круга, умноженной на угол сектора в градусах (α°) и деленной на 360°.

Формула расчета площади сектора круга через угол сектора в градусах и радиус

Через угол сектора (в радианах) и радиус круга

Площадь (S) сектора круга равняется половине произведения угла сектора в радианах (aрад) и квадрата радиуса круга.

Формула расчета площади сектора круга через угол сектора в радианах и радиус

Примеры задач

Задание 1
Дан круг радиусом 6 см. Найдите площадь сектора, если известно, что длина его дуги составляет 15 см.

Решение
Воспользуемся первой формулой, подставив в нее заданные значения:

Пример расчета площади сектора круга

Задание 2
Найдите угол сектора, если известно, что его площадь равна 78 см2, а радиус круга – 8 см.

Решение
Выведем формулу для нахождения центрального угла из второй формулы, рассмотренной выше:

Пример нахождения центрального угла сектора круга

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии