Определение и свойства медианы в равнобедренном треугольнике

1136

В данной статье мы рассмотрим определение и свойства медиан, проведенных к основанию и боковым сторонам равнобедренного треугольника, а также разберем пример решения задачи для закрепления теоретического материала.

Определение медианы

Медианой называется отрезок в треугольнике, который соединяет вершину и середину противоположной стороны.

Медиана в равнобедренном треугольнике проведенная к основанию

  • BD – медиана △ABC;
  • AD = DC.

Треугольник является равнобедренным, если две его стороны равны (боковые), а третья сторона – это основание фигуры.

  • AB = BC – боковые стороны;
  • AC – основание.

Свойства медианы в равнобедренном треугольнике

Свойство 1

Медиана в равнобедренном треугольнике, проведенная к основанию, одновременно является высотой, опущенной на основание, и биссектрисой угла, из которого она проведена.

Медиана проведенная к основанию равнобедренного треугольника

  • BD – медиана и высота, опущенная на основание AC, а также биссектриса угла ABC.
  • ∠ABD = ∠CBD

Свойство 2

В равнобедренном треугольнике медианы пресекаются в одной точке (центр тяжести) и делятся в этой точке в отношении 2:1.

Деление медиан в точке пересечения в равнобедренном треугольнике

  • O – центр тяжести или центроид треугольника;
  • AO = 2OF;
  • BO = 2OD;
  • CO = 2OE.

Свойство 3

Медиана делит равнобедренный треугольник на 2 равных по площади (равновеликих) треугольника. Следовательно, S1 = S2.

Деление медианой равнобедренного треугольника на 2 равновеликих треугольника

Свойство 4

Если провести три медианы в равнобедренном треугольнике, образуются 6 равновеликих треугольников (S1 = S2 = S3 = S4 = S5 = S6).

Деление медианами равнобедренного треугольника на 6 равновеликих треугольников

Свойство 5

Длину медианы в равнобедренном треугольнике, проведенную к основанию, можно найти по следующей формуле:

Формула расчета медианы к основанию равнобедренного треугольника через длины его сторон

  • a – основание;
  • b – боковая сторона.

Свойство 6

Данной свойство, в отличие от перечисленных выше, не относится к медиане, опущенной на основание фигуры. Оно гласит:

Медианы, проведенные к боковым сторонам равнобедренного треугольника, равны между собой.

Медианы проведенные к боковым сторонам равнобедренного треугольника

AF = CE, следовательно, AE = EB = BF = FC.

Пример задачи

Основание равнобедренного треугольника равняется 7 см, а боковая сторона – 12 см. Найдите длину медианы, проведенной к основанию фигуры.

Решение
Воспользуемся формулой, представленной в Свойстве 5, подставив в нее известные нам по условиям задачи значения:

Расчет медианы к основанию равнобедренного треугольника через длины его сторон

ОСТАВЬТЕ ОТВЕТ

Введите свой комментарий
Пожалуйста, введите свое Имя