В данной статье мы рассмотрим определение и свойства медианы равностороннего треугольника, а также разберем примеры решения задач для закрепления изложенного материала.
Определение медианы
Медиана – это отрезок, соединяющий вершину треугольника и середину противоположной стороны.
- BD – медиана, проведенная к стороне AC;
- AD = DC.
Треугольник называется равносторонним, если все его стороны равны (AB = BC = AC).
Свойства медианы равностороннего треугольника
Свойство 1
Любая медиана в равностороннем треугольнике одновременно является и высотой, и серединным перпендикуляром, и биссектрисой угла, из которого проведена.
- BD – медиана, высота и серединный перпендикуляр к стороне AC, а также биссектриса угла ABC;
- ∠ABD = ∠CBD.
Свойство 2
Все три медианы в равностороннем треугольнике равны между собой. Т.е. AF = BD = CE.
Свойство 3
Медианы в равностороннем треугольнике пресекаются в одной точке, которая делит их в отношении 2:1.
- G – центр тяжести (центроид) треугольника;
- AG = 2GF;
- BG = 2GD;
- CG = 2GE.
Свойство 4
Любая медиана равностороннего треугольника делит его на два равных по площади (равновеликих) прямоугольных треугольника. Т.е. S1 = S2.
Свойство 5
Равносторонний треугольник делится тремя медианами на шесть равновеликих прямоугольных треугольников. Т.е. S1 = S2 = S3 = S4 = S5 = S6.
Свойство 6
Точка пересечения медиан в равностороннем треугольнике является центром описанной вокруг и вписанной окружностей.
- r – радиус вписанной окружности;
- R – радиус описанной окружности;
- R = 2r (следует из Свойства 3).
Свойство 7
Длину медианы равностороннего треугольника можно вычислить по формуле:
a – сторона треугольника.
Примеры задач
Задача 1
Вычислите длину медианы равностороннего треугольника, если известно, что его сторона равна 6 см.
Решение
Для нахождения требуемого значения применим формулу выше:
Задача 2
Самая большая сторона одного из треугольников, образованных в результате пересечения трех медиан в равностороннем треугольнике, равняется 8 см. Найдите длину стороны данного треугольника.
Решение
Нарисуем чертеж согласно условиям задачи.
Из Свойства 5 мы знаем, что в результате пересечения всех медиан образуются 6 прямоугольных треугольников.
- BG = 8 см (самая большая сторона, является гипотенузой △BFG);
- FG = 4 см (катет △BFG, в 2 раза меньше гипотенузы BG – следует из Свойства 3).
Применяем теорему Пифагора, чтобы найти длину второго катета BF:
BF2 = BG2 – FG2 = 82 – 42 = 48 см2.
Следовательно, BF ≈ 6,93 см.
BF равняется половине стороны BC (т.к. медиана делит сторону треугольника пополам), следовательно, BC ≈ 13,86 см.