Определение и свойства медианы равностороннего треугольника

50858

В данной статье мы рассмотрим определение и свойства медианы равностороннего треугольника, а также разберем примеры решения задач для закрепления изложенного материала.

Определение медианы

Медиана – это отрезок, соединяющий вершину треугольника и середину противоположной стороны.

Медиана в равностороннем треугольнике

  • BD – медиана, проведенная к стороне AC;
  • AD = DC.

Треугольник называется равносторонним, если все его стороны равны (AB = BC = AC).

Свойства медианы равностороннего треугольника

Свойство 1

Любая медиана в равностороннем треугольнике одновременно является и высотой, и серединным перпендикуляром, и биссектрисой угла, из которого проведена.

Медиана в равностороннем треугольнике

  • BD – медиана, высота и серединный перпендикуляр к стороне AC, а также биссектриса угла ABC;
  • ∠ABD = ∠CBD.

Свойство 2

Все три медианы в равностороннем треугольнике равны между собой. Т.е. AF = BD = CE.

Равенство медиан в равностороннем треугольнике

Свойство 3

Медианы в равностороннем треугольнике пресекаются в одной точке, которая делит их в отношении 2:1.

Деление медиан в точке пересечения в равностороннем треугольнике

  • G – центр тяжести (центроид) треугольника;
  • AG = 2GF;
  • BG = 2GD;
  • CG = 2GE.

Свойство 4

Любая медиана равностороннего треугольника делит его на два равных по площади (равновеликих) прямоугольных треугольника. Т.е. S1 = S2.

Деление равностороннего треугольника медианой на два равновеликих прямоугольных треугольника

Свойство 5

Равносторонний треугольник делится тремя медианами на шесть равновеликих прямоугольных треугольников. Т.е. S1 = S2 = S3 = S4 = S5 = S6.

Деление равностороннего треугольника медианами на шесть равновеликих прямоугольных треугольников

Свойство 6

Точка пересечения медиан в равностороннем треугольнике является центром описанной вокруг и вписанной окружностей.

Центры описанной и вписанной в равносторонний треугольник окружностей на пересечении медиан

  • r – радиус вписанной окружности;
  • R – радиус описанной окружности;
  • R = 2r (следует из Свойства 3).

Свойство 7

Длину медианы равностороннего треугольника можно вычислить по формуле:

Формула нахождения медианы равностороннего треугольника через длину его стороны

a – сторона треугольника.

Примеры задач

Задача 1
Вычислите длину медианы равностороннего треугольника, если известно, что его сторона равна 6 см.

Решение
Для нахождения требуемого значения применим формулу выше:

Нахождение медианы равностороннего треугольника через длину его стороны (пример)

Задача 2
Самая большая сторона одного из треугольников, образованных в результате пересечения трех медиан в равностороннем треугольнике, равняется 8 см. Найдите длину стороны данного треугольника.

Решение
Нарисуем чертеж согласно условиям задачи.

Медианы равностороннего треугольника (пример)

Из Свойства 5 мы знаем, что в результате пересечения всех медиан образуются 6 прямоугольных треугольников.

  • BG = 8 см (самая большая сторона, является гипотенузой △BFG);
  • FG = 4 см (катет △BFG, в 2 раза меньше гипотенузы BG – следует из Свойства 3).

Применяем теорему Пифагора, чтобы найти длину второго катета BF:
BF2 = BG2 – FG2 = 82 – 42 = 48 см2.
Следовательно, BF ≈ 6,93 см.

BF равняется половине стороны BC (т.к. медиана делит сторону треугольника пополам), следовательно, BC ≈ 13,86 см.

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии