Свойства правильного многоугольника

591

В данной публикации мы рассмотрим основные свойства правильного многоугольника касательно его внутренних углов (в т.ч. их суммы), количества диагоналей, центра описанной и вписанной окружностей. Также рассмотрены формулы для нахождения основных величин (площадь и периметр фигуры, радиусы окружностей).

Примечание: определение правильного многоугольника, его признаки, основные элементы и виды мы рассмотрели в отдельной публикации.

Свойства правильного многоугольника

Правильный восьмиугольник

Свойство 1

Внутренние углы в правильном многоугольнике (α) равны между собой и могут быть рассчитаны по формуле:

Формула расчета внутреннего угла правильного многоугольника

где n – число сторон фигуры.

Свойство 2

Сумма всех углов правильного n-угольника равняется: 180° · (n-2).

Свойство 3

Количество диагоналей (Dn) правильного n-угольника зависит от количества его сторон (n) и определяется следующим образом:

Формула расчета количества диагоналей правильного многоугольника

Свойство 4

В любой правильный многоугольник можно вписать круг и описать окружность около него, причем их центры будут совпадать, в том числе, с центром самого многоугольника.

В качестве примера на рисунке ниже изображен правильный шестиугольник (гексагон) с центром в точке O.

Правильный многоугольник и вписанная/описанная окружность

Площадь (S) образованного окружностями кольца вычисляется через длину стороны (a) фигуры по формуле:

Формула расчета площади кольца, образованного описанной и вписанной в правильный многоугольник окружностями

Между радиусами вписанной (r) и описанной (R) окружностей существует зависимость:

Зависимость между радиусами описанной и вписанной в правильный многоугольник окружностей

Свойство 5

Зная длину стороны (a) правильного многоугольника можно рассчитать следующие, относящиеся к нему величины:

1. Площадь (S):

Формула расчета площади правильного многоугольника через длину его стороны

2. Периметр (P):

Формула расчета периметра правильного многоугольника через длину его стороны

3. Радиус описанной окружности (R):

Формула расчета радиуса описанной около правильного многоугольника окружности через длину его стороны

4. Радиус вписанной окружности (r):

Формула расчета радиуса вписанной в правильный многоугольник окружности через длину его стороны

Свойство 6

Площадь (S) правильного многоугольника можно выразить через радиус описанной/вписанной окружности:

Формула расчета площади правильного многоугольника через радиус вписанной в него окружности

Формула расчета площади правильного многоугольника через радиус описанной около него окружности

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии