Теорема Безу: нахождение остатка от деления многочлена на двучлен

376

В данной публикации мы рассмотрим теорему Безу, с помощью которой можно найти остаток от деления многочлена на двучлен, а также, научимся применять ее на практике для решения примеров.

Формулировка теоремы Безу

Остаток от деления многочлена P(x) на двучлен (x-a) равняется P(a).

Pn(x) = a0xn + a1xn-1 + … + an-1x + an

Следствие из теоремы:

Число a является корнем многочлена P(x) исключительно в том случае, если многочлен P(x) без остатка делится на двучлен (x-a).

Из этого следствия вытекает следующее утверждение: множество корней многочлена P(x) тождественно множеству корней соответствующего уравнения P(x)=0.

Решение примеров

Пример 1
Найдите остаток от деления многочлена 5x2 – 3x + 7 на двучлен (x – 2).

Решение
Чтобы найти остаток от деления, согласно теореме Безу, требуется найти значение многочлена в точке a (т.е. вместо x подставляем значение a, которое в нашем случае равняется числу 2).
5 ⋅ 22 – 3 ⋅ 2 + 7 = 21.

Т.е. остаток равен 21.

Пример 2
Используя теорему Безу выясните, делится ли многочлен 3x4 + 15x – 11 на двучлен (x + 3) без остатка.

Решение
В данном случае a = -3. Подставляем это число вместо x в многочлен и получаем:
3 ⋅ (-3)4 + 15 ⋅ (-3) – 11 = 187.

Это значит, что деление без остатка невозможно.

Пример 3
Выясните, при каком значении y, многочлен x23 + yx + 16 без остатка делится на двучлен (x + 1).

Решение
Применив теорему Безу, находим нулевой остаток от деления:
(-1)23 + y ⋅ (-1) + 16 = 0
-1 – y + 16 = 0
y = 15

Таким образом, при y, равном 15, остаток будет равен 0.

ОСТАВЬТЕ ОТВЕТ

Введите свой комментарий
Пожалуйста, введите свое Имя