В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.
Сумма векторов
Сложение векторов выполняется по правилу треугольника.
Геометрическая интерпретация:
Суммой a и b является вектор c, начало которого совпадает с началом a, а конец – с концом b. При этом конец вектора a должен совпадать с началом вектора b.
Для сложения векторов также используется правило параллелограмма.
Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c, совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.
Формула сложения векторов
ci = ai + bi
Элементы вектора c равняются попарной сумме соответствующих элементов a и b.
Для плоских задач | a + b = {ax + bx; ay + by} |
Для трехмерных задач | a + b = {ax + bx; ay + by; az + bz} |
Для n-мерных векторов | a + b = {a1 + b1; a2 + b2; ... an + bn} |
Свойства сложения векторов
1. Коммутативность: a + b = b + a
2. Ассоциативность: (a + b) + c = a + (b + c)
3. Прибавление к нулю: a + 0 = a
4. Сумма противоположных векторов: a + (-a) = 0
Примечание: Вектор –a коллинеарен и равен по длине a, но имеет противоположное направление, из-за чего называется противоположным.
Разность векторов
Для вычитания векторов также применяется правило треугольника.
Если из вектора a вычесть b, то получится c, причем должно соблюдаться условие:
Формула вычитания векторов
ci = ai – bi
Элементы вектора c равны попарной разности соответствующих элементов a и b.
Для плоских задач | a - b = {ax - bx; ay - by} |
Для трехмерных задач | a - b = {ax - bx; ay - by; az - bz} |
Для n-мерных векторов | a - b = {a1 - b1; a2 - b2; ... an - bn} |
Примеры задач
Задание 1
Вычислим сумму векторов
Решение:
a + b =
Задание 2
Найдем разность векторов
Решение:
a – b =