Что такое предел функции

138

В данной публикации мы рассмотрим одно из главных понятий математического анализа – предел функции: его определение, а также различные способы решения с практическими примерами.

Определение предела функции

Предел функции – величина, к которой стремится значение данной функции при стремлении ее аргумента к предельной для области определения точке.

Запись предела:

  • предел обозначается значком lim;
  • под ним добавляется, к какому значению стремится аргумент (переменная) функции. Обычно, это x, но не обязательно, например: “x→1″;
  • затем справа дописывается сама функция, например:
    Пример функции

Таким образом, финальная запись предела выглядит выглядит так (в нашем случае):

Пример предела функции

Читается как “предел функции при икс, стремящемся к единице”.

x→1 – это значит, что “икс” последовательно принимает значения, которые бесконечно приближаются к единице, но никогда с ней не совпадут (ее не достигнут).

Решение пределов

С заданным числом

Давайте решим рассмотренный выше предел. Для этого просто подставляем единицу в функцию (т.к. x→1):

Пример решения предела

Таким образом, чтобы решить предел, сперва пробуем просто подставить заданное число в функцию под ним (если икс стремится к конкретному числу).

С бесконечностью

В данному случае аргумент функции бесконечно возрастает, то есть “икс” стремится к бесконечности (∞). Например:

Предел с бесконечностью (пример)

Если x→∞, то заданная функция стремится к минус бесконечности (-∞), т.к.:

  • 3 – 1 = 2
  • 3 – 10 = -7
  • 3 – 100 = -97
  • 3 – 1000 – 997 и т.д.

Другой более сложный пример

Предел с бесконечностью (пример)

Для того, чтобы решить этот предел, также, просто увеличиваем значения x и смотрим на “поведение” функции при этом.

  • При x = 1, y = 12 + 3 · 1 – 6 = -2
  • При x = 10, y = 102 + 3 · 10 – 6 = 124
  • При x = 100, y = 1002 + 3 · 100 – 6 = 10294

Таким образом при “икс”, стремящемся к бесконечности, функция x2 + 3x – 6 неограниченно растет.

С неопределенностью (икс стремится к бесконечности)

Неопределенность

В данном случае речь идет про пределы, когда функция – это дробь, числитель и знаменатель которой представляют собой многочлены. При этом “икс” стремится к бесконечности.

Пример: давайте вычислим предел ниже.

Пример предела с неопределенностью

Решение

Выражения и в числителе, и а знаменателе стремятся к бесконечности. Можно предположить, что в таком случае решение будет таким:

Неопределенность

Однако не все так просто. Чтобы решить предел нам нужно сделать следующее:

1. Находим x в старшей степени для числителя (в нашем случае – это два).

Старшая степень переменной в числителе

2. Аналогичным образом определяем x в старшей степени для знаменателя (тоже равняется двум).

Старшая степень переменной в знаменателе

3. Теперь делим и числитель, и знаменатель на x в старшей степени. В нашем случае в обоих случаях – во второй, но если бы они были разные, следовало бы взять наибольшую степень.

Деление числителя и знаменателя предела на переменную в старшей степени

4. В получившемся результате все дроби стремятся к нулю, следовательно ответ равен 1/2.

Пример решения предела

С неопределенностью (икс стремится к конкретному числу)

Дробь с нулями в числителе и знаменателе

И в числителе, и в знаменателе представлены многочлены, однако, “икс” стремится к конкретному числу, а не к бесконечности.

В данном случае условно закрываем глаза на то, что в знаменателе стоит ноль.

Пример: Найдем предел функции ниже.

Пример предела с неопределенностью

Решение

1. Для начала подставим в функцию число 1, к которому стремится “икс”. Получаем неопределенность рассматриваемого нами вида.

Пример нахождения предела

2. Далее раскладываем числитель и знаменатель на множители. Для этого можно воспользоваться формулами сокращенного умножения, если они подходят, или решить квадратное уравнение.

В нашем случаем корнями выражения в числителе (2x2 – 5x + 3 = 0) являются числа 1 и 1,5. Следовательно его можно представить в виде: 2(x-1)(x-1,5).

Знаменатель (x – 1) изначально является простым.

3. Получаем вот такой видоизмененный предел:

Преобразование предела (пример)

4. Дробь можно сократить на (x – 1):

Сокращение дроби в пределе (пример)

5. Остается только подставить число 1 в выражение, получившееся под пределом:

Пример нахождения предела функции

Подписаться
Уведомить о
guest
0 комментариев
Межтекстовые Отзывы
Посмотреть все комментарии