В данной публикации мы рассмотрим, что такое экспонента, как выглядит ее график, приведем формулу, с помощью которой задается экспоненциальная функция, а также перечислим ее основные свойства.
Определение и формула экспоненты
Экспонента – это показательная функция, формула которой выглядит следующим образом:
f (x) = exp(x) = e x
где e – число Эйлера.
Экспоненциальная функция (так часто называют экспоненту) может быть определена:
Через предел (lim):
Через степенной ряд Тейлора:
График экспоненты
Ниже представлен график экспоненциальной функции
Как мы видим график (синяя линия) является выпуклым, строго возрастающим, т.е. при увеличении x увеличивается значение y.
Асимптотой является ось абсцисс, т.е. график во II четверти координатной плоскости стремится к оси Ox, но никогда не пересечет и не коснется ее.
Пересечение с осью ординат Oy – в точке
Касательная (зеленая линия) к экспоненте проходит под углом 45 градусов в точке касания.
Свойства экспоненциальной функции
- Экспонента определена для всех x, причем функция везде возрастает, и ее значение всегда больше нуля. То есть:
- область определения:
– ∞ < x + ∞; - область значений:
0 < y < + ∞.
- область определения:
- Обратная к экспоненте функция – это натуральный логарифм (ln x).
- ln e x = x;
- e ln x = x, где x > 0.
- Для экспоненты применимы правила операций с показателями, например:
e (a + b) = e a ⋅ e b. - Производная экспоненты:
- (e x)‘ = e x.
- если вместо x – сложная функция u:
(e u)‘ = e u + u‘ .
- Интеграл экспоненты:
∫ e x dx = e x + C , где C – константа интегрирования.